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Quantum groups SO,("), Sp,(n) have q-determinants, too 
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SISSA, Smda Costiera 11, 34014 Trieste. Italy 
and lstituto Nazionale di Fisica Nncleare. Sezione di Trieste, Italy 

Received 6 September 1993 

Abstract. We construct the q-deformed analogue of the completely antisymmetric tensors 
and the corresponding q-determinants deb T for the quantnm groups SO,(N), Spq(n). The 
consmction is based on the existence of the volume form in the algebra of exterior forms on the 
corresponding quantum spaces. We show that deb T is central in Fun(SOq(N)) (respectively 
Fun(Spq(n))) is group-like under the Hopf algebra comnltiplication, and that its square is 1. 

In [l], one-parameter deformations of the classical simple Lie groups and Lie algebras are 
presented. For each Lie group G a family Fun(G,) of Hopf algebras parameterized by 
q E @2 (q = the parameter of deformation) is given, and for q = 1 (which corresponds to 
the so-called classical limit) Fun(G,) reduces to the Hopf algebra Fun(G) of functions on 
.G. With a suggestive expression, Fun(G,) is said to be the Hopf algebra of functions on 
the 'quantum group' G, [Z]. 

To build the Hopf algebra Fun(SZ,(N)) one chooses an R-matrix which allows the 
definition of the q-determinant de% T of the generators of Fun(GL,(N)) as the only 
non-trivial central element in this algebra; then one can set deb T = 1 as the characterizing 
condition for Fun(SL,(N)). On the contrary, the other Hopf algebras corresponding to 
simple groups of the classical series, namely Fun(SO,(N)),  Fun(Sp,(n)), are characterized 
by quadratic relations in the generators (the orthogonality relations with respect to 
a q-deformed metric, see equation (1) below), which guarantee that the corresponding 
transformations leave the 'distance' in the underlying quantum spaces unchanged. When 
q = 1 (i.e. in the so-called classical limit) for these relations it follows det(T)* = 1. When 
q # 1, a priori it is not clear whether a determinant can be defined and whether its square 
is automatically one. From the definition of these quantum groups it turns out that this is 
the case. In the proof of this result we use the properties of the Euclidean (respectively 
symplectic) quantum spaces and of the corresponding algebras of differential forms on 
them; these prove to be very helpful tools. As intermediate interesting results we show the 
existence of a (unique) volume form on these quantum spaces, hence of the q-deformed 
analogue of the completely antisymmetric tensor E ,  and we find a very simple commutation 
relation between the volume form and the coordinates. From the latter result it immediately 
follows that det, T is central in Fun(G,). Then we prove that (det, T)* = 1. This is 
compatible with setting det,(T) = 1. Hence the mentioned volume form transforms as a 
scalar under the quantum group coaction, namely it has the expected transformation law we 
would require to an integration measure; in fact in [4] we have proved that it is possible, 
in the Euclidean case, to define an integration where the volume form play such a role. 

The elements of the Hopf algebra Fun(G,), where G, denotes one of the quantum 
groups S0, (2n + l), Sp,(n), S0,(2n) (quantum deformations of the classical series 
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B": C,, Dn, respectively) are formal ordered power series in the generating elements 
{q}; here i, j = -E, -n + 1 ,  . . . , -1,O, 1,2,. . . , n for the first series and i, j = 
-n, -n + 1, . . . , -1, 1,2, . . . , n for the last two. The elements satisfy the relations 

T j C j f  TL = 1Fun(G,)Cik  (1) qicjlqk = 1 F u n ( G C ) ~  ik 

and 

(2) 

Here C := I lCi j l l  denotes the q-deformed metric matrix, ~ F ~ ~ ( G , )  denotes the unit of the 
algebra Fun(G,). The former is explicitly given by 

f j j  T h T k  - T i T j i ? h k  
hk 1 m -  h k lm' 

c, := E i q - p ' s i , - j  (3) 

where 

1 (n - 4, n - $, . . . , 4 ,  0, -4..  . , ?  - n)  if G, = SO,(2n + 1) 

if G, = S O , ( k )  
(p i )  := (n, n - 1,. . . , 1, -1,. . . , -n) if G, =~Sp,(n) (4) 1 ( n -  l , n - 2  ,... ( 0,o (..., 1 - n )  

and Q; = 1 if G, = S0,(2n), SO,(Zn + l), E; - sign(i) if G, = Sp,(2n). In the sequel 
N will denote the number 2n + 1 for the series E, and the number 2n for the series C,, 
Dn. C-' = C, for the series B,, Dn, whereas C-' = -C for the series Cn; C ' j  will denote 
(C-')Q. k := IIkfJ is the braid matrix and satisfies the Yang-Baxter equation (in the 
braid version) 

i?12i?23i?,2 = k23k12k23. (5) 

i? is explicitly given by 

where (ej): := gi'8jk.  When q = 1 k reduces to the permutation matrix P, Pi := @!. 
The R-matrix defined by R := Pi? is lower triangular, i.e. = 0 if either i < h, or i = h 
and j < k. When N > 2 and (1 + q2)(1 + cqf-N+l )(1 - q f - N - 1  ) # 0 the matrix i? has 
the spectral decomposition 

.. 

U) 
here E = 1 for G, = SO,(N) and E = -1 for G, = Sp,(n). When G, = SO#) the 
orthogonal projectors P ( + ) ,  P ( - ) P ( ' )  have dimensions [N(N+1)/2]-1, N ( N -  1)/2, 1, and 
for q = 1 they reduce to the projectors over the irreducible corepresentations (symmetric 
modulo singlet, antisymmetric and singlet, respectively) of the tensor product x 8 x 
of the fundamental corepresentation (x) of S O ( N ) .  When G, = Sp&) they have 

= q p t + )  - q -1 P (-) + E q l - N P O  
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dimensions N(N + 1)/2, [ N ( N  - 1)/2] - 1.1. The matrix elements of P(@ are given 
by P$)" = CijChk/QN, where Q N  = (1 + 42-N)(4N - 1)/(q2 - 1) for G, = SO,(N) 
and Q N  = 1 - q-N/2(qN+1 - l)/(q - 1) for G, = Sp,(n). Using the decomposition of the 
identity mafix 1 =~P(+) + P(-) + P@) we can invert relation (7) to obtain 

li satisfies the equations 

f (&T  c3 T )  = (T 0 T ) f ( l i )  

f ( ~ d & 3 ~ 1 2  = & 3 f f l Z f ( f f Z d  (10) 

A ( ~ ( G ~ ) )  = ~FU. (G, )  @ ~ F ~ ~ ( c ~ )  

(9) 

for any polynomial f ( t )  in one variable t .  We recall that the coproduct A is defined by 

A(qi) = Ti @ 2jk (11) 

and on the unit l p u n ( ~ , )  of Fun(G,), and it is extended as a linear on the basic variables 
homomorphism to all Fun(G,): 

A(ab) = A(a)A(b) A(u + b)  = A(u) + A(b) VU, b E Fun(G,). (12) 

According to [l] ,  a (left) Fun(G,) comodule C&q can be defined as the Poincark 
algebra of power series in variables [yi}, (i = --n, 1 - n  , . . . , n) satisfying relations 

(13) 

where f ( f )  is a polynomial function in one variable t .  We recall that the (left) coaction 6 
of Fun(G,) on the comodule is defined by 

" h k [f(k)lLJkY Y = 0 

6(1qG9) = ~ F S " ( G , )  @ lcfcq S(y') = Tk @ yk (14) 

on the basic variables y' and the unit lcfGq of C&, and it is extended as a linear 
homomorphism to all CfGq : 

&(ab) = S(u)S(b) 6(a + b )  = 6(u) + S(b) Vu, b, E C&. (15) 

For instance, in [ l ]  the algebra 0," of the functions on the N-dimensional quantum 
Euclidean space was defined by the N ( N  - 1)/2 independent conditions 

p(,;lu,h,k = 0 (16) 

whereas the algebra Sp," ( N  = 2n) of functions of the quantum symplectic space was 
defined by the N ( N  - 1)/2 independent conditions 

(171 (-)U h k - i j  h k P hk x x - o P ( ; ~ X ~ X '  = 0 e (ri - q1),,x x = 0. 
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Similarly, the algebra &ON of exterior forms on the N-dimensional quantum Euclidean 
space was defined by the conditions 

(18) p(+N k t - 
Since tC (  := tiCijcj is central, we are free to add to the [ N ( N  + l)/2] - 1 independent 
relations (18) one more relation by setting 

hk t -O. 

P ( y p p  = 0 + f C t  = 0. (19) 
We assume this more stringent definition so as to recover the o r d i n 7  algebra of exterior 
forms in the classical limit q = 1. In fact, when q = 1 (P(+) +P(o)),', =,;($8; +! ;Si ) .  
therefore equations (18) and (19) imply the usual commutation relations czcJ + p p  = 0. 
Incidentally, we note that the pair of conditions (18) and (19) comes out in a natural way by 
the construction of the differential forms cis as exterior derivatives d x ' s  of the coordinates 
x i s ,  where the latter satisfy condition (16) (the exterior derivative d is required to satisfy 
linearity, nilpotency, and the Leibnitz rule) [3]. 

In a similar way, we define the algebra A,SpN ( N  = 2n) of exterior forms on the 
N-dimensional quantum symplectic space by the conditions (18) alone (remember that in 
the symplectic case they amount to N(N + 1)/2 independent relations), which reduce to 
the classical commutation relations ecj +t'ti = 0 for q = 1. 

We are going to show that the pair of conditions (18) and (19) (respectively the 
condition (19)) is enough to order the variables 9s belonging to A,ON (respectively 
A,SpN) in any prescribed way, so that we can uniquely define the volume N-form and 
therefore the q-deformed analogue $ i l - i N  of the completely antisymmetric tensor. To 
this end we write the pair of conditions (18) and (19) (respectively condition (19)) in a 
more manageable form. Note that in the case G, = SO,(N)  (in view of the second of 
formulae (8)) the pair (18) and (19) is equivalent to 

F$tk tk  = 0 F = k + q-'l. (20) 
A complete set of independent relations can be obtained from (20) (respectively (18) alone) 
by choosing either i < j ,  i # - j or -i = j 2 0. By combining them linearly we can put 
them in the following more explicit form. The equations defining the quantum Euclidean 
(respectively symplectic) space amount to the system 

q e i e j + t j t i = o  i < j  i # - j  (214 

ep=o i # O  (21b) 

n > l > l  (214 (it-Iq-l + t - l t lq = tl- lt l- i  + tl-ltl-l 

l o  if G, = Sp,(2n) 

if G, = S0,(2n + 1). 
(ql/z + q - l / 2 ) t o p  = q p p  + q-l&-l (21B 

From these relations we realize that any product c't" can be written as a combination of 
terms of the type ti:), where i, j satisfy a prescribed order relation. In particular, if we 
take the usual order relation, i.e. we require i < j for all i, j ,  we see that this statement is 
true since: 
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(i) Equations (214 and (21b) let us order f i em if 1 # -m. 
(ii) If I = -m (say 1 9 0). then: 
(U) If I > 1 repeated application of equation (21~) let us write Bit-' as a combination 

of p j e - j ,  -n Q j g 1: it remains to order e':-', eoeo. 
(b) If 1 = 1 and G, = SOq(2n) (respectively G, = Sp,(n), G,  = S0,(2n + 1)) we 

use equation (214 (respectively (21e) and (21fl) to write e'<-' as a combination of e j e - j ,  

-n < j Q -1. 
(c) If I = 0 (and G ,  = SO, (2n + 1)) equation (21g) and the remarks of point (b) let 

us reduce eoeo to a combination of e'<-' with -n < j Q -1. 

By repeated application of the ordering procedure we can rewrite any monomial M := 
PBiz.. . cik as a combination of monomials c j l e h  . . . t j k ,  where the indices j l ,  j z ,  . . . , jk 
satisfy a prescribed order relation, in particular the usual one j1 < j z  c . . . < j , .  It is 
realized immediately that if k = N ,  just as when q = 1, any monomial M is either zero or 
proportional to 

(22) 

which will therefore be called the 'volume form'; whereas if k > N + 1 M = 0. We define 

...<-'e' ...p"-'y if N is even 
if N is odd 

n -n+1 

d V  := 1;;; " -n+l ...e-'eoe'...e"-'e" 

the q-deformed antisymmetric tensor c: i l - . iN b Y 

B ' I e i 2 .  , ,eh := E:h-.iPdV, (23) 

It satisfies the relations 

if G, = SO,(N), and if G, = Sp,(n) it only satisfies the first one of these relations. If N is 
even, then one easily realizes that $i2-iN will be different from zero only if ( i l  , i 2 ,  . . . , i N )  

is a permutation of (-n, -n + 1, . . . , - 1 , 1 , .  . . , II - 1,  n).  If N is odd, ciiz-iN can be 
different from zero also if no =. 1 (no odd) elements of the row (il, iz, ..., in) are equal to 
0, and the remaining ones are all different from each other. A glance at the relation 

(0 c h 5 n) will convince the reader that this condition is not sufficient to guarantee 
that ~ i C h . . J N  # 0.. Consider for instance a monomial such as .$-"e'-". . . e-'(eo)uc'; it 
vanishes, as in any term obtained upon use of relation (25) at least one e-' with a j > 0 
will appear two times. In fact, if $ j  appears in a term in the RHS of equation (2.5). then in the 
same term there appears also e-'. Therefore c~n~l--n,....-l~O~O~... = 0. To avoid unessential 
complications in the notation assume that i j  # 0 for j < N - no. i j  = 0 for j > N -no 
and no = 2h + 1. Then a little reasoning will convince the reader that, more generally, 

will be zero if the sets Y := {il ,  iz, . . . , iN-no}. 2 := ( - i l . - i z , .  . . , - i ~ - ~ , , }  satisfy 
the condition Y U 2 = (-n. -n + 1 , .  . . , - 1 . 1 ,  . . . , n]. 

4 

. .  
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Now we are in the condition to define the q-deformed determinant of T = llqll in the 
usual way. By definition 

det, T := Tt;"T;n+r . . . T:E$'~. . . 'N (26) 

or, equivalently, 

6(dV) :=deb T @dV. (27) 

Note that the property e j te j z . .  . <j* M dV implies T; qf.. . qt~i~z-,~fl a deb T .  To find 
the result of the coaction A of G, on det, T we use the standard argument used in [l] for 
the quantum group SU,(N):  applying both sides of the identity 

A(det, T )  = det, T @deb T (2% 

i.e. det, T is group-like under the comultiplication A. 

G, = S0,(3): 
We give the explicit expression for the tensor E ,  and the q-determinant in the case 

-q2 -4 , --4 4 O - I  = 
Eol-l - €;I10 = -4 Eo-l l  = 

P 
€,-lo1 = 1 

€;-lo = q p = -q(q1/2 - q-'/2) cy = 0 otherwise. 

(30) 

The determinant is given by 

det, T = T:;T$T: - qT_; I TI Oyl - qTc'T-olT: -k qT; 1 TI or1 -1 - q 2 TI -1 To 0 T-, I 

+qT;'T:,Td -g(g1/2-q-1/2)T;1T$Td. (31) 

We see that det, T is the sum of seven terms, one more (the one propoaio~l  to T,'T$Td) 
than in the classical case. 

Next, we show that det,T is central in Fun(G,).  The proof will be based on 
the fact that the R = Pi matrix for any G, is hiangular and on the possibility of 
constructing the algebra DA,ON (respectively DA,SpN) of differential forms on the 
quantum space 0," (respectively Sp:), i.e. the algebra of formal power series in the x i ,  t j  

variables. In other terms the latter algebra should contain both A, ON (respectively A,SpN) 
and 0," (respectively Sp,") as subalgebras and should be a Fun(SO,(N)) (respectively 
Fun(Sp,(n))) comodule with respect to the coaction defined by equations (14) and (15) 
(where now the basic variables y' can be either x i  or C i ,  and a, b belong to DA,ON 
(respectively DA,SpN)) .  To perform this construction it is enough to prescribe commutation 
relations between the xis and the t j s  of the type 

(32) x i t i  = MhkC i j  h x k 
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in such a way that they are compatible with the defining relations (16), (18) and (19) 
(respectively (17) and (18)) of 02. AqON (respectively Spq(n), hqSp;).  In the SO,(N)  
case, since 

(33) (p(;;'"xhxk)tt , p ( - ) i j ~ h r  kl Y v I 
hk mMmt 

and the LHS vanishes because of relation (16). to consistently impose the latter relation we 
have also to make the RHS vanish. This is automatically guaranteed by equation (10) (where 
we choose f(d) = P(-)) if we take M proportional to either d or d-'. Similarly, such an 
M makes both sides of the equation 

(34) x ~ ( P ~ ~ ~  i i  h k  c ) - - P ; M : , ~ M ; ; ~ ~ ~ ~ x ~  

(where P = Pc+), P(O)) vanish, if we impose relations (18) and (19). In the sequel we will 
take 

* 
M = q R .  (35) 

By repeated application of formula (32) we find the following commutation rule of x' with 
d V  

x'dv 4 RI,,~ igW ' ' ' Rl&, UN., RINM q dVxUN (36) 

(here R = Pd). Because of the lower-triangularity of R, the matrix element R;: is 
different from zero only when I 1  = -n, and a glance at the explicit expression for R shows 
that RI;:, = 8;, . a,,, with a,, # 0. Therefore in formula (36) we can replace I I  by -n 
and RI$,, by 8;, . a,, . Then the cq tensor forces 12 to run over values > -n + 1. Next, we 

to 8; a%. Using the same kind of argument use the triangularity of R to reduce RI,, 
again and again we see that after n (respectively n + 1) steps if N is even (respectively 
odd) relation (36) has become 

N - n i ~ - n + l w  n-1"-2 n u n r - ~ ~ l ~ h . . . l ~  

-n+l", 

(37) 

-".L-n.....lh'-"+,..," Because of the remarks following equation (25). both for even and odd N E ,  
will be different from zero only if ( I N + + ] .  IN-"+z.  . . . , I N )  is a permutation of (1.2,. . . , n). 
Then the enforcement of the same kind of argument (based on the lower triangularity of R )  
as before will reduce relation (37) after n steps to 

RZV"."+L E""-\ -"*I-" ...., IN,+I...lf?dVXYM~ 
x'dV = ~'R:;-n+,UN-.+, lN-"+z"*.*+2 " ' 4, % 

~ ~ 

x'dV = adVx' a # 0 (38) 

which is an interesting result by itself. 

coaction 8 to both sides of equation (38) we obtain 
Now it is stmightforward to show that det, T is central in Fun(G,). Applying the 

Tj' deb T @ d d V  = a(det, T)? @ dVxi = (de% T)$ @ xidV (39) 

whence 

T,f(deb T) = (deb T)?. (40) 
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Formula (27) (together with equation (40)) shows that dV has the right transformations 
properties we would require to consider it as an integration measure. Actually in [4] we 
have shown that it is possible to inhoduce an integration on the quantum Euclidean space 
(based on Stoke’s theorem) where dV plays the role of volume form. 

Reasoning in a very similar way we can prove that (deb T ) 2  = 1. This is the exact 
analogue of the classical situation. Let us consider the algebra and left Fun(G,) comcdule 
generated by two sets of I-forms {.$’I, { f ’ j ]  both satisfying conditions (18) and (19). As 
we did in the case of the algebras DA,ON, DA,Sp“, we have to impose commutation 
relations of the type 

with M proportional to 2 or 2-1, for instance M = -2. NOW let us apply the coaction to 
the form (fiCijf‘j)N. Using relations (1) we obtain 

On the other hand, using relations (41) to move all f ’  to the right of all the f we find that 
(PCije’j)* = j3dV. dV’ with j3 # 0, and therefore 

~%((<‘Cj j f ’ j )~ )  = (de% T)‘ @(c’C&’j)N. (43) 

Comparing equations (42) and (43) we derive the claimed equality (det, T)2 = 1. 
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